skip to main content


Search for: All records

Creators/Authors contains: "Ware, Washat"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Khadka, Dhruba B. (Ed.)
    Organometal halides are promising materials for photovoltaic applications, offering tunable electronic levels, excellent charge transport, and simplicity of thin-film device fabrication. Two-dimensional (2D) perovskites have emerged as promising candidates over three-dimensional (3D) ones due to their interesting optical and electrical properties. However, maximizing the power conversion efficiency is a critical issue to improve the performance of these solar cells. In this work, we studied the photophysics of a two-dimensional (2D) perovskite (CH3NH3)2Pb(SCN)2I2 thin film using steady-state and time-resolved absorption and emission spectroscopy and compared it with the three-dimensional (3D) counterpart CH3NH3PbI3. We observed a higher bandgap and faster charge recombination in (CH3NH3)2Pb(SCN)2I2 compared to CH3NH3PbI3. This work provides an improved understanding of fundamental photophysical processes in perovskite structures and provides the guideline for the design, synthesis, and fabrication of solar cells. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. Optimization of charge generation in polymer blends is crucial for the fabrication of highly efficient polymer solar cells. While the impacts of the polymer chemical structure, energy alignment, and interface on charge generation have been well studied, not much is known about the impact of polymer aggregation on charge generation. Here, we studied the impact of aggregation on charge generation using transient absorption spectroscopy, neutron scattering, and atomic force microscopy. Our measurements indicate that the 1,8-diiodooctane additive can change the aggregation behavior of poly(benzodithiophene-alt-dithienyl difluorobenzotriazole (PBnDT-FTAZ) and phenyl-C61-butyric acid methyl ester (PCBM)polymer blends and impact the charge generation process. Our observations show that the charge generation can be optimized by tuning the aggregation in polymer blends, which can be beneficial for the design of highly efficient fullerene-based organic photovoltaic devices. 
    more » « less